Nanosensor Detection of Synthetic Auxins In Planta using Corona Phase Molecular Recognition

Nanosensor Detection of Synthetic Auxins In Planta using Corona Phase Molecular Recognition

Ang, M. C. Y., Dhar, N., Khong, D. T., Lew, T. T. S., Park, M., Sarangapani, S., ... & Strano, M.

ACS sensors 6.8 (2021): 3032-3046.

Synthetic auxins such as 1-naphthalene acetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) have been extensively used in plant tissue cultures and as herbicides because they are chemically more stable and potent than most endogenous auxins. A tool for rapid in planta detection of these compounds will enhance our knowledge about hormone distribution and signaling and facilitate more efficient usage of synthetic auxins in agriculture. In this work, we show the development of real-time and nondestructive in planta NAA and 2,4-D nanosensors based on the concept of corona phase molecular recognition (CoPhMoRe), to replace the current state-of-the-art sensing methods that are destructive and laborious. By designing a library of cationic polymers wrapped around single-walled carbon nanotubes with general affinity for chemical moieties displayed on auxins and its derivatives, we developed selective sensors for these synthetic auxins, with a particularly large quenching response to NAA (46%) and a turn-on response to 2,4-D (51%). The NAA and 2,4-D nanosensors are demonstrated in planta across several plant species including spinach, Arabidopsis thaliana (A. thaliana), Brassica rapa subsp. chinensis (pak choi), and Oryza sativa (rice) grown in various media, including soil, hydroponic, and plant tissue culture media. After 5 h of 2,4-D supplementation to the hydroponic medium, 2,4-D is seen to accumulate in susceptible dicotyledon pak choi leaves, while no uptake is observed in tolerant monocotyledon rice leaves. As such, the 2,4-D nanosensor had demonstrated its capability for rapid testing of herbicide susceptibility and could help elucidate the mechanisms of 2,4-D transport and the basis for herbicide resistance in crops. The success of the CoPhMoRe technique for measuring these challenging plant hormones holds tremendous potential to advance the plant biology study.


Nanosensor Detection of Synthetic Auxins In Planta using Corona Phase Molecular Recognition

Products Recommended in this Publication

885704-21-2

c-FMS inhibitor

For research use only
B0084-194510

Ki20227

For research use only
B0001-454871

11-Docosenoic acid

For research use only
B0084-286626

OSI-930

For research use only