Potency of vancomycin against Mycobacterium tuberculosis in the hollow fiber system model

Potency of vancomycin against Mycobacterium tuberculosis in the hollow fiber system model

Srivastava, S., Chapagain, M., van Zyl, J., Deshpande, D., & Gumbo, T.

Journal of Global Antimicrobial Resistance 24 (2021): 403-410.

Objectives
To determine whether an inhaled vancomycin formulation resulting in high intrapulmonary 24-h area under the concentration-time curve (AUC0-24) could be optimised for tuberculosis treatment. We also explored vancomycin synergy and antagonism with d-cycloserine and benzylpenicillin.
Methods
We determined MICs of two Mycobacterium tuberculosis (Mtb) laboratory strains (H37Ra and H37Rv) and two drug-susceptible and nine multidrug resistant clinical strains. Second, in the hollow fiber system model of TB [HFS-TB] using Mtb H37Ra strain, we recapitulated vancomycin intrapulmonary pharmacokinetics of eight doses administered twice daily over 28 days, mimicking a 6-h half-life. Using the HFS-TB, vancomycin was tested in combination with d-cycloserine and benzylpenicillin to determine synergy or antagonism between drugs targeting the same pathway.
Results
Vancomycin MICs were 12 and 48 mg/L in drug-susceptible clinical isolates but >96 mg/L in all MDR isolates.In the HFS-TB, vancomycin killed 3.9 ± 0.6 log10 CFU/mL Mtb. The EC50 was calculated as AUC0-24/MIC of 184.6 ± 106.5. Compared with day 0, 1.0 and 2.0 log10 CFU/mL kill was achieved by AUC0-24/MIC of 168 and 685, respectively. Acquired vancomycin resistance developed to all vancomycin doses tested in the HFS-TB. In the HFS-TB, vancomycin was antagonistic to benzylpenicillin, which works downstream to glycopeptides in peptidoglycan synthesis, but synergistic with d-cycloserine, which inhibits upstream d-Ala-d-Ala ligase and alanine racemase.
Conclusion
Our proof-of-concept studies show that vancomycin optimal exposure target for Mtb kill could be achieved via inhalational drug delivery. Addition of drugs synergistic with vancomycin, e.g. d-cycloserine, may lower the vancomycin concentrations required to kill Mtb.


Potency of vancomycin against Mycobacterium tuberculosis in the hollow fiber system model

Products Recommended in this Publication

1192500-31-4

Avibactam

For research use only
1416134-48-9

Avibactam Impurity 9

For research use only
1416134-49-0

Avibactam Impurity 3

For research use only