Neurobiology of Disease (2020): 104878.
Approximately half of people infected with HIV (PWH) exhibit HIV-associated neuropathology (neuroHIV), even when receiving combined antiretroviral therapy. Opiate use is widespread in PWH and exacerbates neuroHIV. While neurons themselves are not infected, they incur sublethal damage and GABAergic disruption is selectively vulnerable to viral and inflammatory factors released by infected/affected glia. Here, we demonstrate diminished K+-Cl− cotransporter 2 (KCC2) levels in primary human neurons after exposure to HIV-1 or HIV-1 proteins ± morphine, resulting in disruption of GABAAR-mediated hyperpolarization/inhibition. We found that the HIV proteins Tat (acting through NMDA receptors), and R5-tropic gp120 (acting via CCR5), and morphine (acting through μ-opioid receptors) induce KCC2 loss. We demonstrate that modifying KCC2 levels or function, or antagonizing NMDAR, CCR5 or MOR rescues KCC2 and GABAAR-mediated hyperpolarization/inhibition in HIV, Tat, or gp120 ± morphine-exposed neurons. Using an inducible, Tat-transgenic mouse neuroHIV model, we found that chronic exposure to Tat also reduces KCC2. Our results identify KCC2 as a novel therapeutic target for ameliorating the pathobiology of neuroHIV, especially PWH exposed to opiates.